Ha-ras proteins exhibit GTPase activity: point mutations that activate Ha-ras gene products result in decreased GTPase activity.
نویسندگان
چکیده
Several ras genes have been expressed at high levels in Escherichia coli and the resultant ras proteins were shown to be functional with respect to their well-known specific, high-affinity, GDP/GTP binding. We were able to detect a weak GTPase activity associated with the purified proteins. The normal cellular ras protein (p21N) exhibits approximately equal to 10 times higher GTPase activity than the "activated" proteins. Even though the turnover rate of the reaction is very low (0.02 mol of GTP hydrolyzed per mol of p21N protein per minute), the reaction appears to be catalytic; one molecule of p21N hydrolyzes more than one molecule of GTP. The GTPase and the GDP binding activities both have been recovered from a Mr 23,000 protein eluted following NaDodSO4/polyacrylamide gel electrophoresis, suggesting that these two activities are associated with the same protein. Mg2+ ions and dithiothreitol are required for GTPase activity and the optimal pH is between 7 and 8. Guanidine X HCl, which is required for solubilizing bacterially expressed ras protein, is strongly inhibitory to GTPase activity at concentrations higher than 0.5 M.
منابع مشابه
RAC1 is a spontaneously activating cancer-associated GTPase
RAC1 is a small, Ras-related GTPase that was recently reported to harbor a recurrent UV-induced signature mutation in melanoma, resulting in substitution of P29 to serine (RAC1), ranking this the third most frequently occurring gain-of-function mutation in melanoma. Although the Ras family GTPases are mutated in about 30% of all cancers, mutations in the Rho family GTPases have rarely been obse...
متن کاملRAC1P29S is a spontaneously activating cancer-associated GTPase.
RAC1 is a small, Ras-related GTPase that was recently reported to harbor a recurrent UV-induced signature mutation in melanoma, resulting in substitution of P29 to serine (RAC1(P29S)), ranking this the third most frequently occurring gain-of-function mutation in melanoma. Although the Ras family GTPases are mutated in about 30% of all cancers, mutations in the Rho family GTPases have rarely bee...
متن کاملRas isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase.
Ha-, N-, and Ki-Ras are ubiquitously expressed in mammalian cells and can all interact with the same set of effector proteins. We show here, however, that in vivo there are marked quantitative differences in the ability of Ki- and Ha-Ras to activate Raf-1 and phosphoinositide 3-kinase. Thus, Ki-Ras both recruits Raf-1 to the plasma membrane more efficiently than Ha-Ras and is a more potent acti...
متن کاملSpecific biochemical inactivation of oncogenic Ras proteins by nucleoside diphosphate kinase.
Activating mutations of Ras have been implicated in approximately 30% of human cancers. In every case, the biochemical consequence of such mutations is to disrupt the GTPase activity of Ras and to render Ras resistant to the actions of GTPase activating proteins. Consequently, oncogenic Ras mutants are "locked" in a GTP-bound active state. We detected a potent activity in Escherichia coli extra...
متن کاملPurification and Characterization from Bovine Brain Cytosol of a Novel Regulatory Protein Inhibiting the Dissociation of GDP from and the Subsequent Binding of GTP to rhoB ~20, a ras p214ike GTP- binding Protein*
A novel regulatory protein for the rho proteins (rhoA p2 1 and rhoB p20), belonging to a ras p2 llras p21like small molecular weight (M,) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1985